技術(shù)
導(dǎo)讀:高位入局,以攻為守
邊緣智能正進(jìn)入商業(yè)驗(yàn)證的重要節(jié)點(diǎn),市場(chǎng)格局的“C位之爭(zhēng)”剛剛開始。對(duì)于巨頭之爭(zhēng),究竟在哪些維度競(jìng)爭(zhēng)?聯(lián)想在這場(chǎng)競(jìng)逐中如何定位?最近又在鍛造什么“秘密武器”?帶著諸多問題,我與聯(lián)想集團(tuán)副總裁兼聯(lián)想研究院人工智能實(shí)驗(yàn)室負(fù)責(zé)人范建平博士、聯(lián)想集團(tuán)中國(guó)區(qū)商用物聯(lián)網(wǎng)業(yè)務(wù)總經(jīng)理王磊先生深入交流了邊緣智能的技術(shù)方向、產(chǎn)業(yè)格局、發(fā)展階段以及一些可行路徑。
全文約3600字,閱讀需要12分鐘。
物啟智,正當(dāng)時(shí)。這是中國(guó)物聯(lián)網(wǎng)產(chǎn)業(yè)的當(dāng)前寫照。
一方面,物聯(lián)網(wǎng)的基本架構(gòu)已基本完善,傳感、通信、云計(jì)算技術(shù)線均趨于成熟,也初步滲透到各行業(yè)數(shù)字化轉(zhuǎn)型中。但另一方面,經(jīng)過合力搭建,萬(wàn)物互聯(lián)后的商業(yè)價(jià)值挖掘卻遲遲未“兌現(xiàn)”,這不免給物聯(lián)網(wǎng)人帶來(lái)焦慮,也讓行業(yè)人疑惑,說好的轉(zhuǎn)型升級(jí)降本增效呢?
或許為了幫助產(chǎn)業(yè)消除疑云,堅(jiān)定信心,近期工信部、科技部等八部委罕見聯(lián)合背書,印發(fā)《物聯(lián)網(wǎng)新型基礎(chǔ)設(shè)施建設(shè)三年行動(dòng)計(jì)劃(2021-2023年)》,再次明確物聯(lián)網(wǎng)的“新基建”身份,讓大家擼起袖子放心干。
所謂基建,就是需要前期投入巨量的人力物力、資源資本,方能在建成后撬動(dòng)指數(shù)級(jí)的經(jīng)濟(jì)收益。然而,對(duì)于物聯(lián)網(wǎng)產(chǎn)業(yè)鏈大量的中小型企業(yè),如何僅憑“相信的力量”就押注投入?
智能,或許是證明萬(wàn)物互聯(lián)價(jià)值最有力的論據(jù)。
過去,IoT數(shù)據(jù)產(chǎn)生在端側(cè),傳輸在管道,AI則在云端,“物”(IoT)與“智”(AI)的交互路徑太長(zhǎng),溝通成本太高,路上還有各路豪杰不時(shí)出沒,數(shù)據(jù)價(jià)值挖掘難上加難。隨著物聯(lián)網(wǎng)數(shù)據(jù)指數(shù)級(jí)增長(zhǎng)、AI技術(shù)的突飛猛進(jìn),業(yè)界意識(shí)到兩點(diǎn)之間直線最短,修筑一條IoT與AI的“直達(dá)專線”才能系統(tǒng)地解決上述成本、負(fù)載、安全等問題。物啟智,AI下沉,邊緣智能就是這條直達(dá)專線。
邊緣智能技術(shù)五六年間從邊緣走到主流,正進(jìn)入商業(yè)驗(yàn)證的重要節(jié)點(diǎn),無(wú)論是應(yīng)用方向還是市場(chǎng)格局,“C位之爭(zhēng)”才剛剛開始。聯(lián)想在今年9月TechWorld大會(huì)上,向外界展示了聯(lián)想大腦-Edge AI平臺(tái)以及開發(fā)者生態(tài)計(jì)劃的階段成果,加上之前硬件的四大產(chǎn)品線——邊緣智能服務(wù)器、工控機(jī)、邊緣計(jì)算網(wǎng)關(guān)與觸控一體機(jī),一系列動(dòng)作不難看出聯(lián)想瞄準(zhǔn)邊緣智能C位的雄心。
欲戴皇冠,必承其重。聯(lián)想能為整個(gè)邊緣智能產(chǎn)業(yè)帶來(lái)什么價(jià)值?對(duì)于巨頭之爭(zhēng),究竟在競(jìng)爭(zhēng)什么?面對(duì)業(yè)內(nèi)諸多懸而未決的問題,聯(lián)想篤定投入的底氣從何而來(lái)?……帶著這些問題,我與聯(lián)想集團(tuán)副總裁兼聯(lián)想研究院人工智能實(shí)驗(yàn)室負(fù)責(zé)人范建平博士、聯(lián)想集團(tuán)中國(guó)區(qū)商用物聯(lián)網(wǎng)業(yè)務(wù)總經(jīng)理王磊先生進(jìn)行深入的采訪交流,本文提煉一些有啟發(fā)的觀點(diǎn),與君分享。
站在邊緣智能風(fēng)口,Ready?Go!
創(chuàng)新,是企業(yè)可持續(xù)發(fā)展的根基,也是收益與風(fēng)險(xiǎn)并存的變數(shù)。面對(duì)任何“機(jī)遇”,企業(yè)都需要通過精準(zhǔn)研判和自我定位而取舍。如今聯(lián)想篤定發(fā)力邊緣智能,并非簡(jiǎn)單的見“風(fēng)”入“口”,而是多方考量之下的決策。
范建平博士表示,聯(lián)想選擇邊緣智能賽道是一個(gè)集天時(shí)、地利、人和于一體的決策。
首先,聯(lián)想在服務(wù)客戶數(shù)字化轉(zhuǎn)型中的過程中,始終堅(jiān)持以洞察客戶需求為己任,不斷感受到客戶對(duì)于現(xiàn)場(chǎng)側(cè)數(shù)據(jù)處理的迫切需求,這成為推動(dòng)聯(lián)想邁向邊緣智能賽道的主動(dòng)力。
其次,當(dāng)需求浮現(xiàn),還需要審慎評(píng)估新方向與企業(yè)自身的基因是否匹配。聯(lián)想是一個(gè)大計(jì)算的公司,從PC時(shí)代的服務(wù)器一路領(lǐng)先到邊緣計(jì)算服務(wù)器,憑借在硬件和AI方面的深厚積累,其實(shí)已在邊緣智能賽道蓄力多時(shí)??梢哉f,是時(shí)代幫聯(lián)想踩到了邊緣智能的風(fēng)口。
聯(lián)想如何完成邊緣智能的“增長(zhǎng)驗(yàn)證”大計(jì)?
一個(gè)賽道,開始總是聞風(fēng)涌入,而后大浪淘沙。當(dāng)邊緣智能進(jìn)入全面比拼硬核實(shí)力的洗牌期,拿著“大計(jì)算”一手好牌入局的聯(lián)想,如何持續(xù)保持高位優(yōu)勢(shì)?
技術(shù)的蓬勃發(fā)展離不開從理論自洽、技術(shù)可行到商業(yè)驗(yàn)證的生命周期。商業(yè)驗(yàn)證先由從0到1的價(jià)值驗(yàn)證,再是從1到10的增長(zhǎng)驗(yàn)證。王磊表示,在中國(guó)豐富的產(chǎn)業(yè)土壤中,從0到1的樣板式創(chuàng)新實(shí)現(xiàn)起來(lái)相對(duì)簡(jiǎn)單,而從1到10的規(guī)?;鲩L(zhǎng)驗(yàn)證則難度陡增。新技術(shù)必須在各行業(yè)實(shí)踐中反復(fù)碰撞、融合、跨越鴻溝、破舊立新,從而書寫技術(shù)自身的價(jià)值上限。一旦跨越增長(zhǎng)驗(yàn)證的關(guān)鍵節(jié)點(diǎn),產(chǎn)業(yè)后續(xù)將迎來(lái)爆發(fā)式增長(zhǎng)。
邊緣智能已完成從0到1的價(jià)值驗(yàn)證,正進(jìn)入規(guī)模化增長(zhǎng)驗(yàn)證期。這一階段,從技術(shù)發(fā)展角度來(lái)看,是一條有待驗(yàn)證的斜率升高的增長(zhǎng)曲線,從實(shí)踐角度來(lái)看,是一條充滿復(fù)雜挑戰(zhàn)的陡峭險(xiǎn)峰。
聯(lián)想基于長(zhǎng)期的實(shí)踐經(jīng)驗(yàn),提煉了邊緣智能在當(dāng)前階段面臨四大難題:
從定制化到通用化化的轉(zhuǎn)變;
從通用化到專用化的成效;
場(chǎng)景與技術(shù)之間的匹配;
生態(tài)模式的構(gòu)建。
聯(lián)想認(rèn)為,增長(zhǎng)驗(yàn)證期,首先是對(duì)整個(gè)邊緣智能產(chǎn)業(yè)的大考,其次才是對(duì)每個(gè)企業(yè)的小考。增長(zhǎng)驗(yàn)證大計(jì),必先有小規(guī)模增長(zhǎng)驗(yàn)證,再通往大規(guī)模增長(zhǎng),這就需要一種“先開槍、再瞄準(zhǔn)”的開拓精神,為邊緣智能探求通用化之路、探尋可行性場(chǎng)景。誰(shuí)來(lái)做好這件“難而正確的事”,可能就是邊緣智能巨頭之爭(zhēng)的核心焦點(diǎn)。
高位入局,以攻為守,聯(lián)想勇于承擔(dān)開拓者的產(chǎn)業(yè)使命,提出技術(shù)+生態(tài)的雙擎戰(zhàn)略:以技術(shù)為劍,破解邊緣智能與落地場(chǎng)景之間的復(fù)雜難題;以生態(tài)為帛,做大的邊緣智能的生態(tài)共同體,合眾之力邁出小規(guī)模增長(zhǎng)的前期驗(yàn)證。
技術(shù)為劍:以“技術(shù)確定性”,覆蓋“場(chǎng)景不確定性”
人類的發(fā)展史離不開工具的進(jìn)化,而持續(xù)打磨技術(shù)工具,也將對(duì)邊緣智能的規(guī)?;鲩L(zhǎng)帶來(lái)新的啟發(fā)。
首先,邊緣智能的規(guī)模應(yīng)用,一直都受制于使用成本。因此要想遍地開花,必須先從控制成本入手。聯(lián)想如何推動(dòng)邊緣智能技術(shù)的降本普惠?
王磊表示,從定制化到通用化、從項(xiàng)目制到產(chǎn)品化,是降本普惠的必然路徑。邊緣智能在行業(yè)中落地開始多為項(xiàng)目形式,它需要定制化的產(chǎn)品、方案和服務(wù),這種重資本模式無(wú)法快速實(shí)現(xiàn)規(guī)?;瘡?fù)制。對(duì)此,聯(lián)想通過從項(xiàng)目實(shí)踐中提煉共性、積累算法模型等工具、打磨為通用型產(chǎn)品,在新項(xiàng)目、新客戶、新場(chǎng)景甚至跨行業(yè)實(shí)現(xiàn)復(fù)用。
其次,通用化的毛細(xì)血管打通了,但同時(shí)又伴隨了新的問題:從通用化到專用化的有效性問題。當(dāng)提煉后的邊緣智能產(chǎn)品投入實(shí)際應(yīng)用中,這些算法模型是否能夠在新場(chǎng)景下發(fā)揮有效性?其實(shí)對(duì)于這個(gè)問題,范建平博士及其團(tuán)隊(duì)已經(jīng)在技術(shù)層面進(jìn)行思考、研發(fā)和論證。
范博士談到,物聯(lián)網(wǎng)是一個(gè)高度碎片化的市場(chǎng),現(xiàn)在邊緣智能滲透的細(xì)分場(chǎng)景,都可以說是”新場(chǎng)景“,樣本數(shù)量不足、通用化模型不準(zhǔn)是新常態(tài)。例如,在精密制造領(lǐng)域,故障/缺陷檢測(cè)類應(yīng)用缺乏存量數(shù)據(jù)支撐十分常見,此時(shí),賦予邊緣設(shè)備一定的學(xué)習(xí)能力就尤為重要。聯(lián)想基于AI積累厚積薄發(fā),為邊緣側(cè)設(shè)備自研“小樣本終生學(xué)習(xí)”能力。
范建平博士將其比擬于人類學(xué)習(xí)新知識(shí)的過程。一方面,先通過元學(xué)習(xí)(Meta learning)教授機(jī)器“學(xué)習(xí)的方法”,同時(shí),通過度量學(xué)習(xí) (MetricLearning)調(diào)取與新場(chǎng)景相似的數(shù)據(jù),就就初步形成針對(duì)新場(chǎng)景的先驗(yàn)知識(shí),相當(dāng)于提高機(jī)器本身的“認(rèn)知水平”;另一方面,通過數(shù)據(jù)增強(qiáng) (Data Augmentation)技術(shù),將有限的樣本數(shù)據(jù)集進(jìn)行一系列“變形”,提高原始樣本數(shù)據(jù)的利用率。
總之,通過數(shù)據(jù)側(cè)與算法側(cè)的“雙向奔赴”,小樣本數(shù)據(jù)亦可“蚍蜉撼樹”,最終訓(xùn)練出準(zhǔn)確有效的算法模型。
此外,范建平博士還強(qiáng)調(diào)了技術(shù)與應(yīng)用之間的辯證關(guān)系。邊緣智能在實(shí)踐中被激發(fā),也需要在實(shí)踐中去驗(yàn)證。聯(lián)想堅(jiān)持“場(chǎng)景+AI”理念,而非“AI+場(chǎng)景”,從根本上避免“拿著錘子去找釘子”的陷阱。同時(shí),聯(lián)想本身就是一個(gè)制造企業(yè),在對(duì)場(chǎng)景需求的判斷上具有天然優(yōu)勢(shì),已有大量可“+AI”的剛需場(chǎng)景,讓邊緣智能可靠落地。
風(fēng)口來(lái)了,人人都能分一杯羹,而大浪淘沙之下,競(jìng)爭(zhēng)周期會(huì)自動(dòng)篩選出那些符合市場(chǎng)需求、并保有核心競(jìng)爭(zhēng)力的玩家。聯(lián)想除了持續(xù)發(fā)力邊緣智能技術(shù)上的領(lǐng)先優(yōu)勢(shì),為當(dāng)前的規(guī)?;y題找出路,更著眼于未來(lái)產(chǎn)業(yè)格局,積極布局邊緣智能生態(tài)建設(shè),重構(gòu)企業(yè)的全新競(jìng)爭(zhēng)力。
生態(tài)為帛:構(gòu)建邊緣智能共同體,共促“最強(qiáng)基建”價(jià)值釋放
對(duì)于平臺(tái)企業(yè),一直都是得開發(fā)者得天下。如何更好地賦能開發(fā)者,是關(guān)乎聯(lián)想邊緣智能戰(zhàn)略能走多遠(yuǎn)的重要課題。
聯(lián)想基于完善的邊緣智能軟硬件技術(shù)底座向千行百業(yè)賦能賦智,發(fā)起ISV伙伴招募計(jì)劃,通過合縱連橫,讓邊緣智能的軟硬件產(chǎn)品大量“被集成”,廣泛滲透各行業(yè)解決方案中。
這是聯(lián)想與生態(tài)伙伴之間是雙向賦能的過程。
一方面,聯(lián)想通過優(yōu)勢(shì)協(xié)同,持續(xù)強(qiáng)化端邊管云智協(xié)同,提升全棧技術(shù)能力,搭建高效協(xié)同的開發(fā)環(huán)境,使開發(fā)者更專注行業(yè)場(chǎng)景本身,打造精品應(yīng)用。另一方面,隨著新的應(yīng)用場(chǎng)景+Edge AI的結(jié)合、驗(yàn)證、內(nèi)測(cè)、打磨,聯(lián)想技術(shù)底座也將得到進(jìn)一步完善。
自今年8月份第一批ISV合作伙伴入駐以來(lái),聯(lián)想邊緣智能已發(fā)展近百家ISV合作伙伴。王磊表示,聯(lián)想與生態(tài)伙伴充分考慮了當(dāng)前邊緣智能市場(chǎng)的發(fā)展階段特征,采用小步快跑的節(jié)奏,快速迭代+充分驗(yàn)證,通過打磨好每一個(gè)產(chǎn)品和應(yīng)用,走穩(wěn)規(guī)?;鲩L(zhǎng)的每一步。
獨(dú)行快,眾行遠(yuǎn)。隨著生態(tài)共同體在更加多元化的行業(yè)落地深耕,邊緣智能才有望發(fā)揮其作為物聯(lián)網(wǎng)時(shí)代最強(qiáng)基建的真正作用。借助生態(tài)之力,聯(lián)想邊緣智能的技術(shù)底座一再破圈,在成就伙伴價(jià)值的同時(shí),也成就了聯(lián)想全新的生態(tài)競(jìng)爭(zhēng)力。